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Abstract. Any candidate theory of quantum gravity must address the breakdown of the classical smooth
manifold picture of space-time at distances comparable to the Planck length. String theory, in contrast,
is formulated on conventional space-time. However, we show that in the low energy limit, the dynamics
of generally curved Dirichlet p-branes possess an extended local isometry group, which can be absorbed
into the brane geometry as an almost product structure. The induced kinematics encode two invariant
scales, namely a minimal length and a maximal speed, without breaking general covariance. Quantum
gravity effects on D-branes at low energy are then seen to manifest themselves by the kinematical effects
of a maximal acceleration. Experimental and theoretical implications of such new kinematics are easily
derived. We comment on consequences for brane world phenomenology.

1 Introduction

The formulation of a relativistic theory of quantum grav-
ity is one of the key open questions in fundamental phys-
ical theory today. Attempts to reconcile the principles of
general relativity and quantum theory by employing oth-
erwise tried-and-tested methods indeed face severe diffi-
culties, suggesting that a considerable departure from the
standard space-time picture may be inevitable. This be-
comes dramatically clear in a simple gedankenexperiment.
Assume we want to probe the space-time structure down
to arbitrarily small distances. The position-momentum
uncertainty relation predicts that this can only be done
at the cost of increasingly large fluctuations of the energy-
momentum tensor. These directly translate into fluctua-
tions of the geometry via Einstein’s field equations. A sim-
ple calculation shows that if one aims at resolving lengths
on the order of the Planck length �P =

√
�G/c3, the de-

scribed mechanism significantly disturbs the very space-
time distance that one attempts to resolve. Any candidate
theory of quantum gravity is therefore expected to con-
ceptually involve a fundamental length scale of order �P .
Due to the rôle of �P as the minimum resolvable length
in the above reasoning, it indeed appears appropriate to
look for a space-time structure in which the Planck length
joins the speed of light as a geometrical invariant. Thus,
it seems inevitable that quantum gravity should be based

� Reprinted in the Proceedings of the 41st International
School on Subnuclear Physics 2003, Erice, Italy.

on such new kinematics with two invariant scales, at least
in the low energy limit.

The conceptual basis of string theory is apparently in
direct opposition to the above reasoning. Standard semi-
Riemannian space-time is upheld as the geometry under-
lying the formulation of the theory. A length scale, how-
ever, is subtly implemented in the dynamics. The fun-
damental objects of the classical theory are assumed to
be strings of characteristic length �. A geometrical action
proportional to the world-sheet surface area swept out by
the string in space-time then features the length scale as
an overall factor for dimensional reasons. However, the
simple geometrical formulation of the theory comes at a
price. The corresponding quantum theory is only consis-
tent in 26-dimensional space-time for the bosonic string,
or 10 dimensions if one includes fermions and supersym-
metry. This result challenges phenomenological models to
provide a compelling reasoning of how the observable 4-
dimensional universe is supposed to emerge from such a
picture. Proposals to resolve this question have experi-
enced valuable new input from the discovery of Dirichlet-
p-branes [1] as non-perturbative solutions in string the-
ory. Dp-branes are (p + 1)-dimensional sub-manifolds of
the 10- or 26-dimensional string target space, defined by
the property that open strings can end on them. Their
phenomenological significance arises from ideas to devise
models of the observable universe as a D3-brane propagat-
ing in the higher dimensional space-time [2]. The dynam-
ics of (and the new physics seen on) such brane-worlds
originate from the interaction with the strings propagat-
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ing in the higher dimensional space-time. It is therefore
of utmost interest to study and understand the properties
of D-branes, as they constitute the fundamental building
blocks of all such brane world theories. Properties of these
building blocks have an impact on any phenomenological
scenario in which they are involved, and are hence largely
model-independent.

The key observation of this paper is that the low en-
ergy dynamics of Dp-branes possess a hidden invariance,
which can be absorbed into the world-volume geometry of
the brane. This geometry can be viewed, alternatively, ei-
ther as a module bundle over a semi-Riemannian manifold
[3], or as a tangent bundle of the standard space-time sub-
manifold with an almost product structure. New geome-
try is synonymous with new kinematics [4]. In the present
case, the local Lorentz symmetry remains intact, but is
extended to a larger local gauge group, by transforma-
tions to rotating and sub-maximally accelerated frames,
with the maximum acceleration given by the inverse 1/�
of the string length scale. In other words, the original dy-
namical encoding of a length scale in string theory finally
implies a particular kinematical implementation on (p+1)-
dimensional manifolds, as it is expected of a candidate
theory of quantum gravity.

2 Pseudo-complex module bundles
over Dp-branes

The exact dynamics of Dp-branes is determined by the in-
teraction of the open strings ending on the brane with any
other strings in the theory. The analysis of the resulting
dynamics is, of course, prohibitively difficult. In the low
energy limit, however, only the massless string modes con-
tribute. For technical simplicity, we consider in this article
the toy model of bosonic string theory. The quantum spec-
trum of bosonic string theory contains a tachyon, which
renders Dirichlet branes unstable. We will ignore this issue
altogether, but remark that the following developments
can be extended in a straightforward manner to type I su-
perstring theory. The irreducible components of the sec-
ond rank tensor modes of massless closed bosonic strings
give rise to effective background fields G(MN), B[MN ] and
Φ, where M, N = 0, . . . , 25. These can be identified as
the classical target space metric, Neveu-Schwarz two-form
potential, and the dilaton. The massless vector modes of
open strings ending on the Dp-brane produce an effective
gauge field Aµ, where µ = 0, . . . , p. It has been shown that
in the low energy limit, the dynamics of this gauge field
A is given by the Dirac–Born–Infeld (DBI) action [5]

∫

brane

√
det(gµν)dx0 ∧ . . .

∧dxpe−Φ
√

det(δµ
ν + Bµ

ν + �2Fµ
ν), (1)

where Fµν = ∂[µAν], and gµν and Bµν are the pull-backs
to the brane of the target space fields gMN and BMN ,
respectively. Indices µ, ν are lifted and lowered using the

induced metric on the brane. Note that for p = 3 the
action (1) can be viewed as a theory of non-linear elec-
trodynamics [6], and has in fact been devised as such in
the 1930s [7] in order to covariantly regularize the energy
divergence of the electrostatic field of a charged point par-
ticle in Maxwell theory. Expansion of the determinant,
using the identity det(1 + F) = exp tr ln(1 + F), with
F = B+�2F , shows that only even powers of F contribute
to the action. We can hence multiply F by a number I sat-
isfying I2 = +1, without changing the action (1) at all.
In order to clear up the notation, we use the shorthand
ω =

√
det(gµν)dx0 ∧ . . . ∧ dxp for the volume form on the

brane, so that we have
∫

brane
ωe−Φ

√
det(δµ

ν + Fµ
ν) =

∫

brane
ωe−Φ

√
det(δµ

ν + IFµ
ν). (2)

Note that Fµν are the components of a (0, 2)-tensor field
on the brane Σ, i.e., F(p) is a linear map TpΣ ⊗ TpΣ −→
IR for any point p ∈ Σ. The addition on the left hand
side of (2) is the addition in the vector space of real (0, 2)
tensors. If we assume that I ∈ IR (i.e. I = ±1) then the
addition on the right hand side is the same, and also well-
defined. It will turn out to be enlightening, however, to
take I �∈ IR and to define an algebraic extension

IP := {a + Ib|a, b ∈ IR} (3)

of IR, where we identify IR ≡ {a + Ib|a ∈ IR, b = 0}.
The set IP equipped with the addition and multiplication
inherited from IR fails to be a field due to the existence of
zero-divisors of the form λ(1± I), where λ ∈ IR, which do
not possess multiplicative inverses. However, (IP, +, ·), to
whose elements we will refer as pseudo-complex numbers,
is a commutative ring. One also finds the terms double
numbers, hyperbolic complex or para-complex numbers
for the ring IP in the literature, indicating that this simple
structure has ample applications [8], but is little known
and hence re-invented time and again. The commutativity
of the ring IP allows, in particular, for the construction
of Lie algebras over IP. Note that in accordance with the
mathematical literature, vector space like structures over a
ring R rather than a number field will be called R-modules
in this paper. Taking I �∈ IR therefore enforces the pseudo-
complexification (TpΣ)IP := {v + Iw | v, w ∈ TpΣ} of the
real tangent spaces, such that tensors of type (r, s) are
now IR-linear maps

⊗

s

(TpΣ)IP −→
⊗

r

(TpΣ)IP, (4)

constituting a real vector space for each pair (r, s). This
renders the addition on the right hand side of (2) well-
defined if I �∈ IR. In summary, the insertion of the pseudo-
imaginary unit I into the DBI action is valid if one ex-
tends the tangent bundle TΣ of the brane world-volume
to a IP-module bundle over Σ with typical fiber IPp+1.
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In like fashion, the frame bundle L(Σ) of the real mani-
fold Σ is replaced by the pseudo-complexified frame bun-
dle LIP(Σ). In general relativity, an observer is given by
a curve e : IR −→ L(Σ) in the frame bundle, where
the metric g on Σ is used to orthonormalize the frame
such that g(ea, eb) = ηab, where a, b = 0, . . . , p and η is
the Minkowski metric. The local O(1, p) gauge group of
the Lorentzian manifold Σ parameterizes the freedom to
choose equivalent orthonormal frames. The frame vector
e0 is taken to be the unit tangent to the curve π(e) on Σ,
where π is the canonical bundle projection. The covariant
change of the frame along the observer’s world-line π(e) is
then parameterized by an anti-symmetric Lorentz tensor
Ωab, such that

∇e0ea = Ωa
beb. (5)

The translational p-acceleration of the observer is Ω0α,
with α = 1, . . . , p. With respect to an observer whose spa-
tial frame vectors eα are parallely transported along π(e),
our observer e possess angular velocity Ωαβ in the αβ-
plane [9].

The Frenet-Serret tensor Ω is therefore implicitly con-
tained in the choice of any given observer e. When extend-
ing the real frame bundle L(Σ) to the pseudo-complexified
one LIP(Σ), we choose to explicitly encode the Frenet-
Serret tensor in the pseudo-imaginary part of a pseudo-
complex frame E : IR −→ LIP(Σ),

Ea := γa
b(δc

b + I�Ωb
c)ec, (6)

where we have included the length scale � for later inter-
pretational convenience. The overall tensor factor γ is a
normalization factor such that

g(Ea, Eb) = ηab. (7)

The freedom of choice for such frames is now obviously
parameterized by the gauge group OIP(1, p) ∼= O(1, p) ×
O(1, p). This decomposition of the pseudo-complex Lo-
rentz group OIP(1, p) into two copies of the real Lorentz
group is easily seen in the zero-divisor decomposition of
IP. The real Lorentz group presents a proper subgroup of
OIP(1, p), and is diagonally embedded in this decomposi-
tion. Note that this means that the standard local Lorentz
symmetry is fully preserved by the pseudo-complexifica-
tion of the frame bundle. Thus we can identify the iner-
tial frames of general relativity with those of the pseudo-
complexified theory, which allows to maintain the strong
equivalence principle.

In order to exhibit the physical interpretation of the
action of OIP(1, p), first note the following polarization
formula. Any Λ ∈ OIP(1, p) can be written as a unique
product of a real Lorentz transformation L ∈ O(1, p) and
a pseudo-complex Lorentz transformation K with purely
pseudo-imaginary coefficients,

Λa
b = Ka

mLm
b, (8)

as can be easily shown in the zero-divisor decomposi-
tion. As the action of real Lorentz transformations L is

well-understood, the polarization formula allows to ana-
lyze the meaning of general OIP(1, p) transformations by
study of transformations of type K = exp(ωmnIMmn),
i.e., transformations with purely pseudo-imaginary coef-
ficients. Consider an unaccelerated and non-rotating ob-
server at time τ , so that Ω(τ) = 0. The pseudo-complex
frame at this instant is then simply Ea = ea. A real
Lorentz transformation L will simply re-define the real
frame and, of course, map the real Lorentz tensor Ω = 0
onto itself. A pseudo-complex Lorentz transformation of
type K, however, will yield a transformed frame

E = cosh(ωmnMmn) (1 + I tanh(ωmnMmn)) e, (9)

corresponding to mapping the Frenet-Serret tensor Ω = 0
to

Ω −→ �−1 tanh(ωmnMmn). (10)

This corresponds to a transformation to a non-inertial
frame, with the values for the p-acceleration and the angu-
lar velocities to be read off from the corresponding compo-
nents of Ω. In the following, we will only consider pseudo-
complex frames that are locally continuously connected to
inertial frames, i.e., frames Ea such that Ea = Λm

aem for
some real frame e, and Λ an element of the connection
component of the identity of the pseudo-complex Lorentz
group. We call such frames admissible. Now consider the
phenomenologically interesting case p = 3. There are two
real Lorentz invariants encoded in the Frenet-Serret ten-
sor,

I1 =
1
2
ΩabΩ

ab = a2 − L2, (11)

I2 =
1
2
Ωab(∗Ω)ab = 2a.L, (12)

where ∗Ω denotes the Hodge dual of the two-form Ω. The
3-vectors a and L are the translational acceleration and
angular velocity of the observer. Restricting attention to
observers with admissible frames, we can always apply lo-
cal Oe

IP(1, 3) transformations to obtain a Fermi-Walker
transported observer, i.e., L = 0. For such non-rotating
observers, it is easy to see by direct calculation that the
condition that the frame be admissible corresponds to re-
quiring a covariant upper limit on scalar accelerations,

a2 < 1/�2, (13)

given by the inverse of the string length scale. The fact
that a maximal acceleration arises as a consequence of a
minimal length scale, through the above relation, is not
too surprising. Consider the following simple causality ar-
gument: A relativistic observer of scalar acceleration g
cannot set up, in an operationally well-defined manner,
a coordinate system that extends more than a distance
1/g in any spatial direction, because the Rindler horizon
makes him causally disconnected from certain regions of
space-time. Now if there is a spatially extended object of
characteristic minimal length �, then uniform acceleration
of the whole object, at a value larger than 1/�, would
causally disconnect parts of this object.
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Before pressing on with the application to the Dp-
brane geometry, we list the irreducible second rank ten-
sor representations of the pseudo-complex Lorentz group.
Of immediate physical interest is the connection compo-
nent of the identity of the pseudo-complexified Lorentz
group, which we denote by Oe

IP(1, p). Any element Λ of
the defining vector representation Rv of Oe

IP(1, p) can be
generated by exponentiation of the standard Lorentz gen-
erators (Mmn)a

b = ηmaδn
b − ηnaδm

b with pseudo-complex
parameters ωmn ∈ IP,

Λ(ω) = exp(ωmnMmn), m, n = 0, . . . , p. (14)

It can be shown [3] that the pseudo-complex conjugate
representation R∗

v is equivalent to Rv over IR, but in-
equivalent over IP. All irreducible second rank tensors are
therefore contained in

Rv ⊗IR Rv
∼= Rt ⊕ Ra ⊕ Rs ⊕ RH ⊕ RH , (15)

if we use a tensor product over IR, or

Rv ⊗IP Rv
∼= Rt ⊕ Ra ⊕ Rs, (16)

Rv ⊗IP R∗
v

∼= RH ⊕ RH , (17)

if we use a tensor product over IP. Elements of the rep-
resentation spaces Rt, Ra, Rs, RH , RH can be concisely
encoded in a pseudo-complex trace, and pseudo-complex
symmetric, anti-symmetric, hermitian or anti-hermitian
matrices. Both methods to take tensor products yield the
same irreducible representations finally. We mention both
in order to illustrate that care must be taken in specifying
whether one deals with IR-linear or IP-linear structures.
From the tensor product (17), we read off the transforma-
tion behavior of hermitian second rank tensors H ∈ RH

as
Hab −→ Λm

aΛ∗n
bHmn (18)

under OIP(1, p)-transformations, where Λ ∈ Rv. Rewrit-
ing the Dirac–Born–Infeld action in terms of the pseudo-
hermitian tensor H, whose local frame components are
given by Ha

b := Ea
µE∗

b
ν(δµ

ν + IFµ
ν) yields

∫

Σ

ωe−Φ
√

det(Eµ
a E∗b

ν Ha
b). (19)

This expression is manifestly invariant under OIP(1, p)
transformations. Let us briefly summarize what we have
achieved by casting the Dirac–Born–Infeld action into the
form (19). In its original form (1), the length scale � ap-
pears as a numerical constant, without any geometrical
meaning. Extending the real frame bundle of the brane to
its pseudo-complexified version allows to re-write the DBI
action in the fully equivalent form (19). The length scale
�, however, now appears as an invariant of the orthogonal
group Oe

IP(1, p), formally on an equal footing with the in-
variant speed of light. The kinematical interpretation of
pseudo-complex Lorentz transformations identifies 1/� as
the maximum admissible (Lorentz-)scalar acceleration for

a non-rotating observer. For a rotating observer with an-
gular velocity L, the maximal acceleration is shifted up to√

�−2 + L2. We have thus achieved our goal of geometriz-
ing the length scale �, in a way that is consistent with the
low energy dynamics of Dirichlet p-branes.

3 Almost product manifolds

So far, we considered a semi-Riemannian manifold Σ with
pseudo-complexified tangent spaces. From a mathemati-
cal point of view, this is a somewhat hybrid structure,
and therefore leads us to the natural question of whether
this pseudo-complex structure of the tangent spaces can
be absorbed into the manifold structure itself. The pur-
pose of the present section is to cast this question into a
precise form, and to find to which extent such a reformu-
lation is possible. From a physical point of view, we might
want to restrict our attention to Fermi-Walker transported
observers, as we can always arrange for such systems ex-
perimentally by means of gyroscopes. Consider the frame
vector E0 of an observer on a low energy Dp-brane with
Ωαβ = 0 for α, β = 1, . . . , p. Using (6), we find an expres-
sion for this frame vector in terms of the (p + 1)-velocity
u and covariant acceleration a = ∇uu of the observer’s
world-line x,

E0 =
u + I�a√
1 − �2a2

. (20)

Representing the unit 1 and pseudo-imaginary unit I in
IP = IR ⊕ IR by matrices

1 =

(
1 0
0 1

)

, I =

(
0 1
1 0

)

, (21)

and identifying the pseudo-complex module IPn with IRn⊕
IRn, the normalization condition g(E0, E0) = 1 can be
written as the two conditions

γ2(g ⊗ 1) (u ⊕ �a, u ⊕ �a) = 1, (22)
γ2(g ⊗ I) (u ⊕ �a, u ⊕ �a) = 0, (23)

where γ = 1/
√

1 − �2a2. Now consider the natural lift of
the curve x in Σ to the curve X = x ⊕ �u on the tangent
bundle TΣ. If τ is the natural parameter of the curve x
with respect to the metric g on Σ, then define the new
parameter ω = τ/γ, which we will soon identify as the
natural parameter of the lifted curve X with respect to a
particular metric on TΣ. It is easily shown that in terms
of the lifted curve X, the normalization conditions read

gD(
dX

dω
,
dX

dω
) = 1, (24)

gH(
dX

dω
,
dX

dω
) = 0, (25)

where gD and gH are the so-called diagonal and horizon-
tal lifts of the space-time metric g to the tangent bundle
[10]. Note that dX/dω = γ(u⊕ �du/dτ) is not identical to
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E0 = γ(u ⊕ �∇uu). However, the connection coefficients
in ∇uu are absorbed into the definition of gD and gH ,
whose components in the induced frame on TΣ can be
easily derived from the stated equivalence of (22-23) to
(24-25). As is shown in differential geometry, both gD and
gH are globally defined semi-Riemannian metrics on TΣ.
From (24), we see that the parameter ω is the natural
parameter of the curve X with respect to the metric gD,
as anticipated above. We hence obtain a bi-metric tan-
gent bundle picture (TΣ, gD, gH) for the Dirichlet brane
geometry, equivalent to the module-bundle approach for
non-rotating observers.

The question of whether the pseudo-complex structure
of the tangent spaces ultimately originates from a mani-
fold with pseudo-complex coordinates, can now be rigor-
ously addressed. The bi-metric structure (TΣ, gD, gH) can
be reconstructed from a metric tangent bundle

(TΣ, gD, F ) (26)

with a globally defined almost product structure F :=
(gD)−1

gH . An almost product structure is a (1, 1) ten-
sor F , such that F 2 is the identity transformation on the
tangent spaces TQTΣ of the tangent bundle TΣ for all
Q ∈ TΣ. Product and almost product manifolds have
been explored in the mathematical literature, and there
exist integrability theorems analogous to those for com-
plex and almost complex manifolds. In particular, the van-
ishing of the Nijenhuis tensor

NLM
J := (∂KF J

L − ∂LF J
K)FK

M − (L ↔ M),
J, K, L, M = 0, . . . , 2p + 1 (27)

is necessary and sufficient [11] for the almost product
structure to be induced from a manifold with pseudo-
complex local charts IPp+1. However, for the almost prod-
uct structure at hand, F = (gD)−1gH , the Nijenhuis ten-
sor can be calculated explicitly and is seen to vanish if and
only if the base manifold Σ is flat. This is, of course, not
the generic case for a Dirichlet brane. This answers our
question, of whether the pseudo-complex structure of the
tangent spaces can be fully absorbed into pseudo-complex
coordinates, to the negative. However, in the tangent bun-
dle formulation, the normalization conditions (24-25) pro-
vide a clear physical interpretation for the rôles of the
metrics gD and gH . The requirement that tangent bundle
curves are null with respect to gH is simply a reformula-
tion of the orthogonality of covariant velocity and acceler-
ation, g(u, a) = 0 for any timelike world-line. The normal-
ization of the tangent bundle vector dX/dω with respect to
gD is equivalent to requiring that there is an upper bound
on admissible covariant accelerations, g(a, a) < 1/�2.

The partial geometry (TΣ, gD) has been studied be-
fore [12,13] as a maximal acceleration geometry, but with-
out contact to any well-studied candidate theory of quan-
tum gravity. It is remarkable that the low energy dy-
namics of Dirichlet branes imply just this geometry, and
complete it by requiring that the tangent bundle is fur-
ther equipped with a second metric gH , or, equivalently,

an almost product structure F . Indeed, analogy with the
symplectic structure of classical phase space would ap-
parently rather suggest almost complex tangent bundles
(TΣ, gD, J), with J2 = −1. There is, however, a the-
orem due to Tachibana and Okumura [14], that shows
that simultaneous covariant constancy of both structures,
∇gD = 0 and ∇J = 0 (which is required if one wants to
invoke a strong principle of equivalence), is possible if and
only if the base manifold Σ is flat. In contrast, there is a
connection ∇H on TΣ, the horizontal lift [10] of the Levi-
Civita connection on (Σ, g), which renders both the metric
gD and the almost product structure F simultaneously co-
variantly constant. The structure of low energy Dirichlet
branes therefore induces a geometry that is consistent with
the strong principle of equivalence. We have seen this com-
patibility of the maximal acceleration/minimal length ge-
ometry with the strong equivalence principle before in the
module bundle picture, and thus the automatic circum-
vention of the Tachibana-Okumura theorem in the tan-
gent bundle approach provides a non-trivial consistency
check on that result.

4 Applications

We give two examples for applications of the Dirac–Born–
Infeld kinematics, one each for the module bundle picture
and almost product manifold picture, respectively. The
Thomas precession of the spatial frame of an observer in
circular motion with respect to an inertial frame is a stan-
dard result in special relativity. It is brought about es-
sentially by the structure of the real Lorentz algebra, in
particular the commuting of two independent boost gen-
erators up to a rotation generator,

[M0α, M0β ] = c−2Mαβ . (28)

As the orbiting observer has non-constant velocity, one
must perform successive infinitesimal Lorentz boosts, in
order to analyze the parallel transport of the spatial
frames attached to the observer, using the above com-
mutation relations. In the non-relativistic limit c → ∞,
the effect vanishes. Such an observer in circular motion
also undergoes a non-constant acceleration. In the pres-
ence of a length scale �, changes to accelerating frames
are generated by IMoα, as we saw from (10). Successive
infinitesimal transformations of this type effect an addi-
tional rotation of the spatial frame, because

[IM0α, IM0β ] = �2Mαβ . (29)

The corrected Thomas precession rate for an observer per-
forming circular motion of radius R and angular velocity
ω is found [15] to be

(√
(1 − R2ω2/c2)(1 − R2�2ω4/c2) − 1

)
ω, (30)

deforming the standard result by the length parameter �.
However, the real Lorentz symmetry algebra so(1, p) is a
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proper subgroup of the pseudo-complex algebra soIP(1, p),
meaning that Lorentz symmetry is not affected by the
presence of the invariant length scale. This shows, as
a corollary, that high precision measurements of the
Thomas precession in atomic physics cannot possibly fal-
sify Lorentz symmetry, as is often assumed. Such experi-
ments rather yield a lower bound on the hypothetical max-
imal acceleration.

The second example is more of theoretical interest,
and uses the above result that in the case of a flat space-
time Σ, the almost product structure on TΣ is integrable,
i.e., can be absorbed into pseudo-complex coordinates. A
careful study [17] of free quantum field theory on pseudo-
complexified Minkowski space IPp+1 shows that the prop-
agators of any tensor field are automatically Pauli-Villars
regularized with the regularization parameter given by the
inverse length scale 1/�. From a representation theoretical
point of view, this result is understood from the fact that
an irreducible representation of the pseudo-complexified
Poincaré group (being the isometry group on IPp+1) ac-
commodates two irreducible representations of the real
Poincaré group, of equal spin (helicity) but generically dif-
ferent mass. Invoking a correspondence principle to stan-
dard quantum field theory in the limit � → 0, one then
observes that one of these real particles acts as a Pauli-
Villars regulating Weyl ghost of the other, proper particle.
Taking the standard relativistic limit � → 0 after, rather
than before, the construction of a quantum field theory
therefore corresponds exactly to the Pauli-Villars regular-
ization prescription. The isometry group OIP(1, p) appar-
ently captures the regularization of the classical Dirac–
Born–Infeld dynamics in a kinematical way.

5 Conclusion

Starting from the Dirac–Born–Infeld action as the low en-
ergy dynamics of a gauge field A on a Dirichlet p-brane in
bosonic string theory, we found that the length scale ap-
pearing in the fundamental string dynamics finally gives
rise to relativistic kinematics on the brane that preserve
this length scale as a geometrical invariant. This find-
ing implies, independently of string theory, two equivalent
techniques for the extension of Lorentzian manifolds such
as to encode a length scale as a geometrical invariant. The
first technique consists in the pseudo-complexification of
the individual tangent spaces of the space-time manifold.
The resulting module bundle structure is particularly well-
suited for the discussion of observers in the new geome-
try. These still enjoy local Lorentz symmetry, but the ex-
tended local isometry group further contains transforma-
tions to rotating and accelerated frames. For non-rotating
observers, however, only frames of sub-maximal acceler-
ation are continuously connected to inertial frames. The
maximal acceleration scale is given by the inverse length
scale that originally entered the string action. A surprising
immediate consequence of these minimal length/maximal
acceleration kinematics is a correction to the Thomas pre-

cession. The module bundle formalism naturally allows for
the discussion of rotating coordinate systems, but as we
can always arrange for Fermi-Walker transported spatial
frames by the use of gyroscopes, one can focus one’s at-
tention to non-rotating observers. Such a restriction per-
mits to cast the new geometry into the form of a met-
ric structure on the space-time tangent bundle, addition-
ally equipped with a particular almost product structure.
Both the tangent bundle metric and the almost prod-
uct structure are globally defined lifts of the space-time
metric. This lift of the metric structure to the tangent
bundle presents the second technique for a geometrical
implementation of a fundamental length scale, applica-
ble to any Lorentzian manifold. The tangent bundle pic-
ture is particularly adapted to answer geometrical ques-
tions about the theory, as the whole apparatus of dif-
ferential geometry on the tangent bundle is available. In
particular, the theory of product manifolds shows that
the pseudo-complex structure on the tangent spaces does
not derive from a manifold with pseudo-complex coordi-
nates in the presence of gravity. In the absence of gravity,
however, the kinematical group reduces to the isometry
group of pseudo-complexified space-time, allowing for the
definition of sub-maximally accelerated quantum particles
as irreducible representations of the pseudo-complexified
Poincaré group. In this setting, a conjecture [16] on the
regularizing effect of a maximal acceleration in quantum
field theory can be made precise and proved [17].

In particular on D3-branes, the exhibited string theo-
retically induced maximal acceleration kinematics are of
direct interest for brane world phenomenology. As is illus-
trated by the case of the Thomas precession, the mathe-
matically simple structure of the theory allows its ready
application. The merit of the presented approach to min-
imal length kinematics roots in the following facts. Any
generically curved Lorentzian manifold can be extended
such as to geometrically encode a minimal length scale
in a covariant way. The employed mathematics consists
of standard techniques in differential geometry and linear
algebra. The preservation of the local Lorentz symmetry
allows to maintain the strong equivalence principle, while
the extended local isometry group makes non-trivial pre-
dictions for accelerated observers. Finally, its derivation
from the low energy dynamics of Dirichlet branes makes
rigorous contact with string theory, with implications for
string phenomenology and the prospect of future insights
into the presented questions inspired by string theory.

Acknowledgements. The author thanks G. ’t Hooft for the op-
portunity to speak in the new talent sessions at the 41st Inter-
national School on Subnuclear Physics in Erice, Italy, and the
University of Cambridge for financial support.

References

1. J. Polchinski: Phys. Rev. Lett. 75, 4724 (1995)
2. L. Randall, R. Sundrum: Phys. Rev. Lett. 83, 4690 (1999)



F.P. Schuller: Young Scientists: Almost product manifolds as the low energy geometry of Dirichlet branes 19

3. F.P. Schuller, H. Pfeiffer: Phys. Lett. B 578, 402–408
(2003)

4. F.P. Schuller: Annals Phys. 299, 174 (2002)
5. R.G. Leigh: Mod. Phys. Lett. A 4, 2767 (1989)
6. G.W. Gibbons, K. Hashimoto: JHEP 0009, 013 (2000)
7. M. Born, L. Infeld: Proc. Roy. Soc. Lond. A 144, 425

(1934)
8. J. Hucks: J. Math. Phys. 34, 5986 (1993)
9. C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation

(W.H. Freeman 1973)
10. K. Yano, S. Ishihara: Tangent and Cotangent Bundles

(Marcel Dekker New York 1973)

11. K. Yano: Differential Geometry on Complex and Almost
Complex Spaces, vol. 49, Macmillan Intl. Series of Mono-
graphs in Pure and Appl. Math. (Macmillan, New York
1965)

12. H.E. Brandt: Found. Phys. Lett. 2, 39 (1989)
13. E.R. Caianiello: Lett. Nuovo Cim. 32, 65 (1981)
14. S. Tachibana, M. Okumura: Tohoku Math. Jour. 14, 156–

161 (1962)
15. F.P. Schuller: Phys. Lett. B 540, 119 (2002)
16. V.V. Nesterenko, A. Feoli, G. Lambiase, G. Scarpetta:

Phys. Rev. D 60, 065001 (1999)
17. F.P. Schuller, M. Wohlfarth, T. Grimm: Class. Quant.

Grav. 20, 4269 (2003)


	Introduction
	relax mathversion {bold}Pseudo-complex module bundles over D$p$-branes
	Almost product manifolds
	Applications
	Conclusion

